
[A
cc
ep

te
d
@

H
um

an
Sy

s
20

25
]

Towards Secure User Interaction in WebXR
Chandrika Mukherjee

Purdue University
West Lafayette, IN, USA
cmukherj@purdue.edu

Arjun Arunasalam
Purdue University

West Lafayette, IN, USA
aarunasa@purdue.edu

Habiba Farrukh
University of California, Irvine

Irvine, CA, USA
habibaf@uci.edu

Reham Mohamed Aburas
American University of Sharjah

Sharjah, UAE
raburas@aus.edu

Z. Berkay Celik
Purdue University

West Lafayette, IN, USA
zcelik@purdue.edu

Abstract
Advancements in the extended reality (XR) has resulted in the
emergence of WebXR, an XR-open standard interface that enables
users to access immersive virtual environments via a browser with-
out additional software. Following this, diverse applications are
being developed for WebXR ranging from gaming and shopping
to medical and military use. However, recent research indicates
that various UI properties in WebXR, such as synthetic input and
same-space overlapping objects, can be exploited by adversaries
to manipulate users into unintentional actions, especially in the
advertising ecosystem. The consequences range from system mal-
functions and user data loss to financial and reputational impacts
on several involved ad-stakeholders.

In this paper, we present our experience in designing a log frame-
work that captures granular user interactions in a 3D WebXR en-
vironment to evaluate the impact of UI manipulation attacks on
users. Leveraging data collected in a previous study, we demon-
strate the use cases of our log framework for XR platforms and
developers. In addition, we discuss practical lessons learned, high-
lighting the logger’s limitations and outlining future directions.
Our work brings us closer to realizing security-focused logging in
WebXR environments to protect users from various UI manipula-
tion attacks, thereby helping them preserve their autonomy within
these immersive platforms.

CCS Concepts
• Security and privacy → Usability in security and privacy; •
Human-centered computing→ Activity centered design.

Keywords
WebXR; Security & Privacy; User Interaction Logging

ACM Reference Format:
Chandrika Mukherjee, Arjun Arunasalam, Habiba Farrukh, Reham Mo-
hamed Aburas, and Z. Berkay Celik. 2025. Towards Secure User Interaction
in WebXR. In The 3rd International Workshop on Human-Centered Sensing,
Modeling, and Intelligent Systems (HumanSys ’25), May 6–9, 2025, Irvine, CA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3722570.
3726880

This work is licensed under a Creative Commons Attribution 4.0 International License.
HumanSys ’25, Irvine, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN /2025/05
https://doi.org/10.1145/3722570.3726880

1 Introduction
The WebXR API allows users to engage with immersive environ-
ments directly through a WebXR-enabled browser. With new input
methods such as controllers and gaze, along with sensor-enabled
immersion, WebXR differs significantly from the standard web.
These UI properties increase the realism of WebXR environment.
For example, transparency can create visual effects such as depth
perception, flowing water, and shattering glass. Similarly, multiple
objects can be placed within the same space in WebXR to create
complex virtual scenes and intricate object interactions (e.g., vari-
ous objects representing marine life in an underwater scene). This
presents new opportunities for developing immersive web applica-
tions across various domains, including gaming [6], shopping [12],
medical [4], and military [10] training.

However, priorworks [3, 7, 9] demonstrate that security-sensitive
UI properties in WebXR enable adversaries, particularly in the ad-
vertising ecosystem, to manipulate users into unintended actions
or facilitate dark patterns. In the standard web, ads are delivered us-
ing the <iframe> HTML element, which isolates execution across
different origins, including the ad content. However, in WebXR,
there is no iframe-like element, requiring developers to allocate a
portion of the scene to ads, thereby reducing control over content
from separate origins.

Exploiting this lack of isolation, entities in the ad ecosystem
(developers, ad service providers, and advertisers) can leverage
security-sensitive UI properties (e.g., transparency, synthetic input,
blind spots, and clicks registered by the first clickable entity) to
manipulate user interactions. These manipulations can have seri-
ous consequences for users, including forced engagement with ad
content, generating revenue for adversaries, and even data theft or
malware downloads. In addition, they can financially impact other
entities in the ad ecosystem or damage their reputation.

In our recent work on WebXR UI manipulation attacks [9], we
introduced five new attacks, identified nine from prior research [3,
7], and proposed a taxonomy categorizing these 14 attacks into four
groups based on the primary objectives of malicious actors within
the ad ecosystem. These are Click Manipulation ( A ), Peripheral
Exploitation ( B ), Functionality Disruption ( C ), and UI-based Privacy
Leakage ( D ). Attacks within A 1 trick users into unintentional
clicks on ads to generate fraudulent revenue. Attacks within B
exploit areas outside the focus of users to generate illicit impressions
or clicks on ads. Attacks in C intentionally disrupt the functionality

1We use these notations henceforth to refer to respective categories.

https://orcid.org/0009-0001-1777-6492
https://orcid.org/0009-0001-1631-6064
https://orcid.org/0000-0002-3582-5999
https://orcid.org/0009-0002-1364-0229
https://orcid.org/0000-0001-7362-8905
https://doi.org/10.1145/3722570.3726880
https://doi.org/10.1145/3722570.3726880
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722570.3726880


[A
cc
ep

te
d
@

H
um

an
Sy

s
20

25
]

timestamp. camera position, 
rotation, direction. gaze 
position, fov.

timestamp. entity
id. cursor ID.

  DPobj
logger

Tobj
logger

timestamp. DPobj 
position. gaze 
position.

Cursor event 
logger

Entry to the 
log 
framework 
from html

Camera and gaze 
logger

Left controller cursor

Right controller cursor

Gaze cursor

raycaster-intersection

click

timestamp. count of intersected 
entities.
for each entity, intersection point, 
distance, entity ID.

timestamp. entity ID.
click intersection point. distance.

raycaster-intersection

click

Left controller cursor

Gaze cursor

Right controller cursor

Environment 
scanner

init()

init()

DPobj

Tobj

Identifies 
Tobj and DPob j 

raycaster-intersected

raycaster-intersected-cleared

click

componentchanged

Component

Entity

Event

Logs 
collected

3

1

4

2b

2a
init()

init()

Component
Entity

Invokes

init()

remove()

update()

tick()

Entity-Component 
LifeCycle in A-Frame

Detached 
from 
scene

Removed 
from 
entity

Initialized

Called 
after

Property updated

On each 
frame of 
render 
loop

Lifecycle handler method

tick()

Figure 1: The design of our log framework.

of the app, preventing user-intended actions. Lastly, attacks in D
extract sensitive user information, compromising their privacy.

To analyze the impact of these attacks on users, we conducted a
between-subjects user study with 100 users in our prior work [9].
We incorporated our identified 14 attacks within four different apps
(gaming, reading, shopping, and travel) with varying interaction
requirements. To capture granular 3D interaction data from the
WebXR environment, we developed a log framework and integrated
it with all 14 attacks in all four apps. This enabled us to analyze
changes in user-interaction behavior in the presence of attacks.
Additionally, it helped evaluate whether attack effectiveness varied
based on the interaction requirements of each app.

In this paper, we present the design and implementation of the
log framework for analyzing user interactions in WebXR, detailing
its components and deployment. We demonstrate various use cases
of the collected logs from our user study and explore the logger’s
functionality. For example, we analyze trends in user-intended and
unintended interactions, attention patterns, and potential click con-
fusion, and their implications. In addition, we discuss its limitations
and outline directions for future work.

2 Logging Interactions in WebXR
Motivation. For our user study, we integrated each attack into
four apps - gaming, reading, shopping, and travel, where users
performed context-specific tasks such as reading a book, shopping
for clothes, shooting targets, or exploring locations. We define task-
related objects as Tobj and those potentially linked to dark patterns
(e.g., ads) as DPobj. To analyze user attention in a 3D scene over time
or to determine whether clicks on DPobj and/or Tobj resulted from
genuine interest, it was necessary to develop a log framework.

Existing web analytics tools/libraries (e.g., Google Analytics [2],
Firebase [5]) can automatically track events such as clicks, page
navigation, and scrolling. Yet, in WebXR, to understand user actions
and their consequences, detailed data on individual movements of
the gaze and controller cursors are required, along with the position
and rotation of the camera. In addition, information on intentional
and unintentional interactions is needed. For example, a click on a

transparent ad or a visible ad triggered by a fake invisible cursor is
considered unintentional. In contrast, a click on an ad by a fake but
visible cursor is regarded intentional. Thus, interactions in identified
UI attacks can be intentional or unintentional, highlighting the need
for a custom WebXR logger. We implemented our log framework
using A-Frame [1], chosen for its simplicity, rapid prototyping
capabilities, and active developer community. With built-in WebXR
support, it employs a declarative HTML-like syntax and an entity-
component-system architecture.
Design & Implementation. Figure 1 illustrates the design of our
log framework, featuring a modular structure and reusable compo-
nents. It consists of four primary log components: 1 environment
scanner, 2 Tobj and DPobj logger, 3 cursor event logger and 4
camera and gaze logger.

Single log component can be attached to multiple entities in a
scene by its name and schema parameters to add corresponding
functionality. These components undergo lifecycle stages such as
creation, update, and destruction that can be dynamically managed
using lifecycle handlers (e.g., init(), tick(), update(), remove()).
The init() method runs at component initialization, while tick()

executes at the start of each frame rendering. Thus, a log compo-
nent’s initialization code can be placed in init(), and continuous
monitoring logic can be implemented within tick().

First, the environment scanner 1 identifies and assigns the Tobj
logger and the DPobj logger to the respective entities. Within a
dynamic scene, an entity may be removed or detached, leading to
the removal of its log component. If the entity reappears, the log
component must be reattached, which is handled by monitoring
within the tick() method.

The Tobj logger 2a and DPobj logger 2b track events such as cur-
sor focus initiation (raycaster-intersected), focus loss (raycaster-
-intersected-cleared), and clicks, recording the corresponding
timestamps, entity IDs, and cursor IDs. Additionally, the DPobj log-
ger monitors position changes based on attack context by listening
for componentchanged events, logging timestamps, DPobj position,
and gaze position. The criteria for considering interactions as in-
tentional or unintentional are also included within this component.



[A
cc
ep

te
d
@

H
um

an
Sy

s
20

25
]

Gaming ShoppingReading

M
ea

n 
C

lic
ks

Travel

User intended clicks towards task
User unintended clicks towards ads

Figure 2: Aggregated mean and standard deviation of clicks.

For example, for the Visual Overlapping attack, an unclickable Tobj
is kept in the foreground of DPobj, and any click towards the Tobj is
forwarded to the clickable DPobj. If the cursor intersects both objects
simultaneously, the event is marked as unintended; otherwise, as
intended. These events are registered within the init() method.

To capture data on simultaneous intersections with multiple enti-
ties via a single cursor, the logger incorporates the cursor event log-
ging component 3 . It independentlymonitors the various events oc-
curring on all cursors (left and right controller cursors and gaze cur-
sor) within the given scene. More specifically, it sets up event listen-
ers in the init() function for events like raycaster-intersection

and click. This process includes recording details such as the times-
tamp, the count of intersected entities, and, for each intersected
entity, the intersection point, distance, and its ID.

Lastly, the log framework introduces a camera and gaze log-
ger 4 to estimate the user’s position and attention and determine
whether the DPobj is outside or inside the user’s focus area. How-
ever, logging this information at every frame is computationally
expensive and redundant, as it may not always be associated with
meaningful interactions. Therefore, it logs this information only
during interactions involving any of the cursors, where it captures
the timestamp, field of view (FoV), position, rotation, and direction
of the camera, along with the gaze position. The log framework
assigns these event listeners within the init() method. These cap-
tured event details help us determine the user interactions within
the dark pattern integrated WebXR environment.
Deployment. The logger’s modular design and single entry point
make it flexible and easy to integrate into any A-Frame app. The
developer defines Tobj and DPobj based on the context of the app
and attaches the entry point of the logger to an entity in the scene.
The logger was integrated into all apps, either incorporating an
attack or serving as a control group app without attack.

We conducted three experiments per user within a one-hour
session, where each user interacted with three selected scenarios
and completed an experience survey after each experiment. For
each experiment, we recorded the log data and downloaded it into a
text file once the user exited the immersive mode inWebXR. During
the 100-participant between-subjects user study, we distributed the
apps using Glitch [11] platform while remotely serving the app
URL on the Meta Quest 2 device using the Meta Quest Developer
Hub (MQDH) [8].

3 Evaluation
User Interactions. Our log framework records user-intended and
unintended interactions, along with detailed intersection data such

X-position

Z-
po

si
tio

n

(a) Gaming

X-position

Z-
po

si
tio

n

(b) Reading

Figure 3: User gaze density, indicating attention.

Click Duration (ms)

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Intended clicks

Unintended clicks

(a) Attack A

Click Duration (ms)

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Intended clicks
Unintended clicks

(b) Attack C

Figure 4: CDF of click durations.

as intersection points, timestamp, and cursor ID, providing valuable
insights into user interaction behaviors within the 3D WebXR envi-
ronment. Using the collected data, we can determine the frequency
of intended and unintended interactions, identify the cursors in-
volved, and detect patterns in unintended interactions, such as
whether they occur at specific times or are instigated by particular
entities. For example, Figure 2 presents the mean and standard
deviation of unintended clicks on DPobj and intended clicks on Tobj
across different apps, using data collected from 100 users. The re-
sults reveal notable variation in user behavior within the same
app type, supporting the feasibility of capturing varying user in-
teraction patterns. We also observe more intended clicks in the
gaming task and fewer in the reading task, highlighting differences
in interaction frequency for these apps.
User Attention. Through an analysis of gaze movement data, our
log framework also reveals insights into user attention in the 3D
space. To illustrate, in Figure 3 we see that user attention is more
widely distributed in the gaming app, whereas the reading app
shows a single strong fixation point.
Clicks Uncertainty. The log framework captures data on focus ini-
tiation, clicks, and focus removal. By analyzing the time difference
between focus removal and clicking, we can infer user uncertainty
about their actions. Longer intervals indicate unclear feedback,
helping identify problematic UI elements. For example, as shown in
Figure 4, intended clicks were shorter in duration for both A and C ,
indicating that when users received feedback on their actions, they
quickly shifted focus and moved the cursor elsewhere. However,
the figure also shows that A results in prolonged unintended in-
teractions, whereas the logger detects multiple shorter unintended
clicks caused by C . Intended clicks are substantially fewer in C ,
while repeated unintended actions indicate the user’s difficulty in
interacting with the UI, aligning with the attack objective.
Target Changes. The DPobj logger component in our framework
tracks the position changes of DPobj over time along with user gaze
positions. Figure 5 compares B and C based on positional changes



[A
cc
ep

te
d
@

H
um

an
Sy

s
20

25
]

Timestamp (min)

D
is

ta
n

ce
 (

m
)

(a) Attack C
D

is
ta

n
ce

 (
m

)

Timestamp (min)

(b) Attack B

Figure 5: Ad object position over time.

Timestamp (s)

#
 I
n

te
ra

c
ti

o
n

(a) Attack A

Timestamp (s)

#
 I
n

te
ra

c
ti

o
n

(b) Attack C

#
 I
n

te
ra

c
ti

o
n

Timestamp (s)

(c) Attack D

Figure 6: Interactions over time. Unintended focus,
Unintended click, Intended focus, Intended click.

Tobj 
logger

DPobj 
logger

Camera and 
gaze logger

Cursor 
event
logger

Environment 
scanner

A
ve

ra
ge

 L
og

gi
ng

 

O
ve

rh
ea

d 
(m

s)

Components

Figure 7: Logging overhead for each component.

of DPobj over time. Specifically, it shows whether the DPobj remains
outside the user’s area of attention. The figure shows that, unlike C ,
in B , the DPobj remains outside the user’s attention area for most
of the time, tracking them from a large distance behind.
Interaction Trend. Our log framework also facilitates the analysis
of user’s unintended and intended interaction trends over time.
Figure 6 shows a single user’s interactions over one minute in an
app with a specific attack type. Figure 6(b) shows a vast number
of unintended interactions C every 10 seconds. Compared to the
attack from A for the same app (Figure 6(a)), C exhibits a substan-
tially lower number of intended clicks throughout the entire time
period. As shown in Figure 6(c), our log framework detects a high
number of unintended interactions for the attack from D during
the initial phase of sensitive data extraction.
Performance Analysis. Collecting logs in resource intensive apps
can affect performance and immersion. On average, our framework
records 62.6 KB logs per minute. The overhead evaluation of our log
framework indicates an average overhead of 0.19 ms with a stan-
dard deviation of 0.16 ms. According to Figure 7, the environment
scanner 1 has the highest overhead, with significant variability
also observed in the DPobj logger 2b . However, the overall overhead
incurred by the framework is minimal.

4 Discussion & Conclusions
As detailed in Section 3, the environment scanner 1 incurs the
highest overhead, despite the minimal overall impact of the log
framework. This component’s tick() method, which continuously
monitors dynamically generated entities per frame, is resource-
intensive due to its comprehensive scene scan. To optimize, the
scanner should focus solely on specified, dynamically generated
entities, requiring developers to define context-specific rules. In
addition, it can also reduce the frequency of event logging to opti-
mize overhead. Furthermore, implementing remote log collection
for continuous server-side analysis would be more efficient than
post-session data retrieval.

Despite limitations, our log framework offers versatile utility for
developers and platforms. Its modular design facilitates easy inte-
gration into any A-Frame app. Developers can assess user attention
and interaction patterns, enabling strategic entity placement and
the detection of unintended interactions with third-party elements,
such as ads. Moreover, our evaluation shows the framework’s po-
tential for platforms like WebXR [13] to detect malicious activities
and warn users of UI manipulation threats in immersive web en-
vironments. This enables users to continue or reduce interaction
with the affected interface, mitigating loss of autonomy.

For simplicity, the logger was tailored for specific attack types in
this study. Future work will extend it for simultaneous detection of
multiple attacks and applyingmachine learning to identify elements
like Tobj and DPobj, reducing developer effort while maintaining
user control in web-based immersive platforms.

5 Acknowledgments
We thank the anonymous reviewers for their valuable feedback.
This work was partially supported by NSF through grants CNS-
2144645 and IIS-2229876. The findings and recommendations in
this work are those of the authors and do not necessarily represent
the views of the NSF.

References
[1] A-Frame. https://aframe.io/. [Online; accessed 31-Mar-2025].
[2] Google Analytics. https://developers.google.com/analytics. [Online; accessed

31-Mar-2025].
[3] Kaiming Cheng, Arkaprabha Bhattacharya, Michelle Lin, Jaewook Lee, Aroosh

Kumar, Jeffery F. Tian, Tadayoshi Kohno, and Franziska Roesner. 2024. When the
User Is Inside the User Interface: An Empirical Study of UI Security Properties in
Augmented Reality. In USENIX Security Symposium.

[4] WebXRMedical Simulation Demo. https://web-xr-med-sim.vercel.app/sim/demo.
[Online; accessed: 31-Mar-2025].

[5] Firebase. https://firebase.google.com/. [Online; accessed 31-Mar-2025].
[6] A-Frame Gaming. https://heyvr.io/arcade/games/wackarmadiddle. [Online;

accessed: 31-Mar-2025].
[7] Hyunjoo Lee, Jiyeon Lee, Daejun Kim, Suman Jana, Insik Shin, and Sooel Son.

2021. AdCube: WebVR Ad Fraud and Practical Confinement of Third-Party Ads.
In USENIX Security Symposium.

[8] MQDH. https://developers.meta.com/horizon/documentation/unity/ts-odh/.
[Online; accessed: 31-Mar-2025].

[9] Chandrika Mukherjee, Reham Mohamed, Arjun Arunasalam, Habiba Farrukh,
and Z Berkay Celik. 2025. Shadowed Realities: An Investigation of UI Attacks in
WebXR. In USENIX Security Symposium.

[10] US Department of Defense Optimises Immersive Learning Tools.
https://www.xrtoday.com/mixed-reality/us-department-of-defence-optimises-
immersive-learning-tools. [Online; accessed: 31-Mar-2025].

[11] Glitch Platform. https://glitch.com/. [Online; accessed 31-Mar-2025].
[12] A-Frame Shopping. https://aframe.io/aframe/examples/showcase/shopping/.

[Online; accessed: 31-Mar-2025].
[13] WebXR. https://www.w3.org/TR/webxr/. [Online; accessed 31-Mar-2025].

https://aframe.io/
https://developers.google.com/analytics
https://web-xr-med-sim.vercel.app/sim/demo
https://firebase.google.com/
https://heyvr.io/arcade/games/wackarmadiddle
https://developers.meta.com/horizon/documentation/unity/ts-odh/
https://www.xrtoday.com/mixed-reality/us-department-of-defence-optimises-immersive-learning-tools
https://www.xrtoday.com/mixed-reality/us-department-of-defence-optimises-immersive-learning-tools
https://glitch.com/
https://aframe.io/aframe/examples/showcase/shopping/
https://www.w3.org/TR/webxr/

	Abstract
	1 Introduction
	2 Logging Interactions in WebXR
	3 Evaluation
	4 Discussion & Conclusions
	5 Acknowledgments
	References

